Burst Strength of BIOLOX®delta Femoral Heads and Its Dependence on Low-Temperature Environmental Degradation

Author:

Tateiwa Toshiyuki,Marin EliaORCID,Rondinella Alfredo,Ciniglio Marco,Zhu Wenliang,Affatato SaverioORCID,Pezzotti Giuseppe,Bock Ryan M.,McEntire Bryan J.ORCID,Bal B. Sonny,Yamamoto Kengo

Abstract

Zirconia-toughened alumina (ZTA) currently represents the bioceramic gold standard for load-bearing components in artificial hip joints. ZTA is long known for its high flexural strength and fracture toughness, both properties arising from a microscopic crack-tip shielding mechanism due to the stress-induced tetragonal-to-monoclinic (t→m) polymorphic transformation of zirconia. However, there have been concerns over the years regarding the long-term structural performance of ZTA since the t→m transformation also spontaneously occurs at the material’s surface under low-temperature environmental conditions with a concomitant degradation of mechanical properties. Spontaneous surface degradation has been extensively studied in vitro, but predictive algorithms have underestimated the extent of in vivo degradation observed in retrievals. The present research focused on burst-strength assessments of Ø28 mm ZTA femoral before and after long-term in vitro hydrothermal ageing according to ISO 7206-10. An average burst strength of 52 kN was measured for pristine femoral heads. This value was ~36% lower than results obtained under the same standard conditions by other authors. A further loss of burst strength (~13% in ultimate load) was observed after hydrothermal ageing, with increased surface monoclinic content ranging from ~6% to >50%. Nevertheless, the repetitively stressed and hydrothermally treated ZTA heads exceeded the minimum burst strength stipulated by the US Food and Drug Administration (FDA) despite severe test conditions. Lastly, Raman spectroscopic assessments of phase transformation and residual stresses on the fracture surface of the femoral heads were used to clarify burst-strength fluctuations and the effect of hydrothermal ageing on the material’s overall strength degradation.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3