Properties of Point Defects in Silicon: New Results after a Long-Time Debate

Author:

Bracht Hartmut1,Kube René1,Hüger Erwin2,Schmidt Harald2

Affiliation:

1. Universitaet Muenster

2. Technische Universität Clausthal

Abstract

The contributions of vacancies and self-interstitials to silicon (Si) self-diffusion are a matter of debate since many years. These native defects are involved in dopant diffusion and the formation of defect clusters and thus influence many processes that take place during Si single crystal growth and the fabrication of silicon based electronic devices. Considering their relevance it is remarkable that present data about the properties of native point defects in Si are still limited and controversy. This work reports recent results on the properties of native point defects in silicon deduced from self-diffusion experiments below 850°C. The temperature dependence of silicon self-diffusion is accurately described by contributions due to vacancies and self-interstitials assuming temperature dependent vacancy properties. The concept of vacancies whose thermodynamic properties change with temperature solves the inconsistency between self-and dopant diffusion in Si but further experiments are required to verify this concept and to prove its relevance for other material systems.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3