Machining Characteristics of EDM Using Gas Media

Author:

Lin Yao Jang1,Lin Yan Cherng1,Wang A Cheng2,Chen Yuan Feng3,Chow Han Ming3

Affiliation:

1. Nan Kai University of Technology

2. Ching Yun University

3. NanKai University of Technology

Abstract

The aim of this study is to construct a diverse process of electrical discharge machining (EDM) in gas media, and then the new developed machining approach was used to investigate the effects of machining parameters on machining characteristics. Firstly, the feasibility of the EDM in gas media was established with consecutive electrical sparks generated within the machining gap. Moreover, the main machining parameters such as peak current, pulse duration, machining polarity, and gas media supply conditions like air compressed pressure were varied to evaluate the effects on machining characteristics of SKD 61 mold steel in the developed EDM process. The surface morphology of machined surface was observed by a scanning electronic microscope (SEM) to determine the influences of EDM discharge energy on surface integrities. From the result shown in experiments, the material removal rate (MRR) increased with peak current, pulse duration, and air pressure. In addition, the electrode wear rate (EWR) went up with peak current at first, and then attained a peak value with extending the pulse duration and the air pressure, but the EWR declined with further increasing of the pulse duration and the air pressure. Furthermore, the integrities of the machined surface revealed dramatically rough features when the peak current was set at high value. While the pulse duration was further extending, the surface integrities of the machined surface exhibited a smoothened trend obtained by EDM in gas media. Consequently, the developed technique of EDM in gas media possesses the potential of promoting machining performance, reducing environment impact, and extending the EDM applications.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3