Characterisation of Titanium Powder Flow, Shear and Bulk Properties Using the FT4 Powder Rheometer

Author:

Chikosha Silethelwe1,Mahlatji Linda M.1,Chikwanda Hilda K.1

Affiliation:

1. Council for Scientific and Industrial Research (CSIR)

Abstract

In order to reliably design and operate different powder processes, an understanding of the dynamic flow, shear and bulk properties of powders is required. Generally, powders are evaluated by several techniques that determine their flow, shear and bulk properties. The techniques can include compression tests, shear tests, angle of repose, flow of powder in a funnel, tapped density and many others. In order to minimize the number of instruments required to characterise the powder and eliminate operator error, automated powder rheometers that can do most of the required tests have been developed. The FT4 powder rheometer is one of these and has found widespread use in the pharmaceutical industry. In this study, the FT4 powder rheometer was used to characterise two metallic titanium powders with different particle sizes, namely CSIR Ti-45μm (Fine Powder) and CSIR Ti +45-180μm (Coarse Powder). Their particle size, particle size distribution, bulk densities, compressibility, cohesion, flowability index, effective angle of internal friction and wall friction angle were determined. Preliminary results of the study indicated that fine powder had a lower bulk density, was more compressible and more cohesive than the coarse powder. The fine powder had a lower flowability index compared to the coarse powder for both the Jenike and Peschl classification. The varying degrees of cohesion of these powders were confirmed by the cohesion values that were higher for the fine powder. The fine powder had a lower angle of internal friction but higher wall friction angle compared to the coarse powder.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3