Effect of Bipolar Gate-to-Drain Current on the Electrical Properties of Vertical Junction Field Effect Transistors

Author:

Veliadis Victor1,Hearne Harold1,Stewart Eric J.1,Caldwell Joshua D.2,Snook Megan1,McNutt Ty3,Potyraj Paul1,Scozzie Charles4

Affiliation:

1. Northrop Grumman Electronic Systems

2. U.S. Naval Research Laboratory

3. APEI Inc.

4. U.S. Army Research Laboratory

Abstract

Electron-hole recombination-induced stacking faults have been shown to degrade the I-V characteristics of SiC power p-n diodes and DMOSFETs with thick drift epitaxial layers. In this paper, we investigate the effect of bipolar gate-to-drain current on vertical-channel JFETs. The devices have n- drift epitaxial layers of 12-μm and 100-μm thicknesses, and were stressed at a fixed gate-to-drain current density of 100 A/cm2 for 500 hrs and 5 hrs, respectively. Significant gate-to-drain and on-state conduction current degradations were observed after stressing the 100-μm drift VJFET. Annealing at 350°C reverses the stress induced degradations. After 500 hours of stressing, the gate-to-source, gate-to-drain, and blocking voltage characteristics of the 12-μm VJFET remain unaffected. However, the on-state drain current was 79% of its pre-stress value. Annealing at 350°C has no impact on the post-stress on-state drain current of the 12-μm VJFET. This leads us to attribute the degradation to a “burn-in” effect.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3