The Important Role of Oxidant in Copper Interconnection Chemical Mechanical Polishing for GLSI

Author:

Liu Xiao Yan1,Liu Yu Ling1,Niu Xin Huan1,Zhao Zhi Wen1,Hu Yi1

Affiliation:

1. Hebei University of Technology

Abstract

Chemical mechanical planarization (CMP) of copper interconnection in hydrogen peroxide (H2O2) as oxidizer based alkaline slurry was investigated. The new model is put forward, which is based on the characteristic of H2O2, chemical kinetics and mechanical removal. This properties of H2O2 can be effectively compensated the defect of surface topology during the process of polishing. Researcher previous study has shown that the surface is largely copper metal with Cu2O at low H2O2 concentrations and largely CuO at high H2O2 concentrations. Cu2O is more easily removed by both chemical and mechanical processes than CuO. During the CMP process, as the oxidizer concentration increases, the removal rate goes up initially followed by a gradual decay. This characteristic of oxidizer is used to achieve copper surface global planarity. The surface planarity was achieved by removing high area on the surface more quickly relative to the low area, because the concentration of Cu2O in the low area as the passivation film is more than the high area. Meanwhile the passivation film of the low area is thicker than the high area. In order to achieve polishing process optimization, the influence of pH adjustment and pressure, are also taken into consideration. Combining both RR and PE, the optimal H2O2 concentration and pressures are in range 1.0 ~1.5 vol% and 0.04 ~0.07 mpa, respectively. The roughness of surface which is measured by AFM is 0.49 after CMP.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3