Performance of a GaAs-Based Pseudomorphic High Electron Mobility Transistor (PHEMT) with an Electroless-Plated Treated Gate

Author:

Huang Chien Chang1,Chen Chun Chia1,Liou Jian Kai1,Chou Po Cheng2,Chen Huey Ing3,Cheng Shiou Ying4,Liu Wen Chau

Affiliation:

1. National Cheng-Kung University

2. National Ilad University

3. Chaoyang University of Technology

4. National Ilan University

Abstract

An interesting GaAs based pseudomorphic high electron mobility transistor (PHEMT) with an electroless-plated (EP) surface treated gate is fabricated and studied. Based on the low-temperature and low-energy deposition conditions, the EP approach can form better metal-semiconductor (M-S) interface with the reduction in surface thermal damages and disordered-states. The material analyses of EP approach, including Auger electron spectroscopy (AES) and scanning electron microscopic (SEM), are examined. The DC performance of EP-gate device is investigated. In addition, the temperature influences of the studied devices, at the temperature region of 300 to 500K, are studied. As compared with the conventional thermal evaporation (TE) approach, the EP-based device shows significantly improved DC characteristics over a wide temperature range (300-500K). Moreover, the EP approach also has advantages of easy operation and low cost.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3