Experimental Verification of a Novel System for the Growth of SiC Single Crystals

Author:

Grasza Krzysztof1,Tymicki Emil1,Racka Katarzyna1,Orzyłowski Marek2

Affiliation:

1. Institute of Electronic Materials Technology

2. Tele- and Radiotechnical Institute

Abstract

A set of single crystal growth experiments was performed in the new resistively heated two-heater furnace, which plays the role of an induction furnace with a moving coil. In this new experimental setup we are able to control the shape of the crystallization front, from flat to extremely convex. The positive results of the experimental tests differ significantly from prior discouraging interpretation of computational modeling results obtained by a commonly used software, previously presented in the literature. The essence of a new regulation of the temperature field during the crystal growth is a displacement of the maximum of the temperature field, which at the beginning of the growth is located close to the seed and it moves towards the source material as the crystal length increases. In this way, the crystallization front is heated with a similar intensity regardless the increasing crystal length.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3