Material Flow in Sheet-Bulk Metal Forming

Author:

Vierzigmann Ulrich1,Koch Johannes1,Merklein Marion2,Engel Ulf2

Affiliation:

1. University of Erlangen-Nuremberg

2. Friedrich-Alexander-Universität Erlangen-Nürnberg

Abstract

Innovative trends like increasing component functionality, the demand for automotive lightweight constructions and the economic issue to optimize existing process chains, require new ways in manufacturing. Today, the traditional sheet metal and bulk metal forming processes are often reaching their limits if closely-tolerated complex functional components with variants have to be produced. A promising approach is the direct forming of high-precision shapes starting from blanks. Thus, classic sheet metal forming operations, such as deep drawing, are combined with bulk metal forming operations like extrusion of complex variants as for example teeth. This combination of sheet and bulk metal forming operations leads to a side by side situation of different tribological conditions according to the locally varying load situations within the same forming process. This new class of forming processes is defined as sheet-bulk metal forming (SBMF). The tribological conditions in sheet-bulk metal forming processes are of major importance for the process realization, its stability and for the quality of the produced part. The objective of this paper is the investigation of material flow in SBMF in general and the attempt to improve the material flow by local adapted tribological conditions. First the material flow was analyzed by FE-simulation of a model geometry that is typical for SBMF. The investigations with FE-simulation have shown, locally adapted tribological conditions are leading to an improvement in material flow and thus to an increased mould filling. As frictional conditions are directly connected to the topography of workpiece and tool, the modification of the workpiece topography is leading to an alteration in friction values. For the modification of workpiece topography grit blasting was used. The increase in friction of grit blasted surface towards untreated surface was investigates by using the laboratory friction tests. To manufacture specimens with locally adapted topographies for forming tests a masking technique has been developed. The masks are designed after the preliminary findings determined by FE-simulation.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3