Comparative Study of Temperature Dependent Barrier Heights of Pd/ZnO Schottky Diodes Grown along Zn- and O-Faces

Author:

Asghar M.1,Mahmood Khalid2,Ali Adnan2,Hasan M.A.3

Affiliation:

1. The Islamia University of Bahawalpur

2. Islamia University of Bahawalpur

3. University of North Carolina

Abstract

In this study, the effect of polar face on Schottky barrier diodes has been investigated. Two samples of ZnO were grown hydrothermally under similar growth conditions. The Palladium (Pd) metal contacts of area 0.78 mm2were fabricated on both faces and were studied comprehensively using DLS-83 Deep Level Spectrometer over temperature range of 160K330K. The current-voltage (IV) measurements revealed that the ideality factor n and barrier height ϕBwere strongly temperature dependent for both faces (Zn and O-face) of ZnO, indicating that the thermionic emission is not the dominant process, which showed the inhomogenity in the barrier heights of grown samples. This barrier height inhomogenity was explained by applying Gaussian distribution model. The extrapolation of the linear ϕapverses n plot to n = 1 has given a homogeneous barrier height of approximately 0.88±0.01 eV and 0.76±0.01 eV for Zn and O-faces respectively. ϕapversus 1/T plot was drawn to obtain the values of mean barrier height for Zn and O-face (0.88±0.01 eV, 0.76±0.01 eV) and standard deviation (δs) (0.015±0.001 V, 0.014±0.001 V) at zero bais respectively. The value of δsfor the Zn-face is larger than O-face, showing that inhomogenity in the barrier heights is more in the sample grown along Zn-face as compared to the sample grown along O-face.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3