Robot-Based Incremental Sheet Metal Forming – Increasing the Geometrical Complexity and Accuracy

Author:

Buff Bolko1,Magnus Christian1,Zhu Jun Hong1,Meier Horst1

Affiliation:

1. Ruhr-University of Bochum

Abstract

The industrial application of incremental sheet metal forming is still limited by certain constraints, e.g. low geometrical accuracy and geometrical complexity. In order to overcome these constraints, this paper presents two approaches which have been carried out within the research project Development of a robot-based dieless incremental sheet metal forming process funded by the German Research Foundation (DFG). The first approach increases the geometrical accuracy by adding an addendum stabilization surface. As neither a partial nor a full die is used in this universal concept, there is a larger influence of the free compliant sheet area surrounding the formed part of the geometry. Thus the sheet shifts away from the forming tool more easily, which often results in a less accurate forming. The addendum stabilization surface reinforces this free sheet area. Experiments have proven this to be as good as a partial die. Especially the subsequent deformation resulting from the interaction of differently shaped elements causes geometrical deviations which are limiting the scope of formable parts. The second approach is based on the subsequent forming of elements belonging to the original geometry, which helps to increase the geometrical accuracy as well as the geometrical complexity. Thus the basic geometry is formed in a first step. Afterwards, further elements are formed subsequently, while the adjacent areas are supported by a peripheral supporting tool which prevents their deformation.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3