Regression-based compensation of part inaccuracies in incremental sheet forming at elevated temperatures

Author:

Möllensiep DennisORCID,Kulessa Philipp,Thyssen Lars,Kuhlenkötter BerndORCID

Abstract

AbstractIncremental sheet forming is a sheet forming process for small lot sizes due to its dieless principle. One of its process variants includes local heating of the sheet to counteract some of the process restrictions (formable materials, forming forces, achievable deformations). Although forming at elevated temperatures provides various advantages, the geometric accuracy of the formed part remains low due to shrinking effects caused by local heating and cooling. This publication presents a data-driven approach where process data is gathered and used in regression learning to predict the geometric accuracy resulting from the shrinking effects. To successfully apply regression learning, a big amount of process data is needed covering a wide range of possible process states. Therefore, a specific experimental series, consisting of 54 individual forming experiments, is designed and carried out. Based on the 3D digitization of the formed parts, a process database is built up comprising 408,296 records, each representing a toolpath point. This process database is used to train 19 different regression models. The performance of their ability to predict the geometric deviations is investigated. A compensation approach is presented that improves the geometric accuracy through a prediction-based modification of the toolpath. Validation experiments demonstrate the improvement of the geometric accuracy of the formed part and the generalizability of the approach.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3