Physico-Chemical Characterization and In Vitro Biological Evaluation of Pure SiHA for Bone Tissue Engineering Application

Author:

Marchat David1,Bouët Guénaëlle2,Lueckgen Aline1,Zymelka Maria1,Malaval Luc2,Szenknect Stéphanie3,Dacheux Nicolas3,Bernache-Assollant Didier1,Chevalier Jérôme4

Affiliation:

1. Ecole Nationale Supérieure des Mines de Saint-Etienne

2. Université Jean Monnet

3. Université de Montpellier 2

4. Université de Lyon

Abstract

Studies about silicon-substituted hydroxyapatites exhibit several shortcomings that leave unanswered questions regarding the properties and subsequent biological outcomes generated by this biomaterial. Firstly, samples characterization is often incomplete, meaning that phase purity on the pellet surface is not assured. In fact, ceramic materials used in literature that are claimed to be pure are actually polluted through second phase as superficial polymerized silicate. In this study, we have successfully synthesized a phase pure silicon hydroxyapatite powder Ca10(PO4)5.5(SiO4)0.5(OH)1.5 (Si0.5HA) compressed this powder into pellets, sintered them, and evaluated the biological response of osteoblast cells (C3H10 line) seeded on the pellet surface. Besides, the solubility in aqueous media of HA and Si0.5HA pellets were determined through static experiments. These tests attempt to provide a comprehensive picture of the cellular response to the SiHA material, in order to determine the mechanism by which Si evokes the improved in vitro biological outcomes described in the literature. Results revealed first an equivalent solubility of Si0.5HA and HA pellets, and second that cells do not react favourably to the pure SiHA surface.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3