Functionalization of Hydroxyapatite Ceramics: Raman Mapping Investigation of Silanization

Author:

Siniscalco David,Dutreilh-Colas Maggy,Hjezi Zahi,Cornette Julie,El Felss Nadia,Champion EricORCID,Damia Chantal

Abstract

Surface modification of bioceramic materials by covalent immobilization of biomolecules is a promising way to improve their bioactivity. This approach implies the use of organic anchors to introduce functional groups on the inorganic surface on which the biomolecules will be immobilized. In this process, the density and surface distribution of biomolecules, and in turn the final biological properties, are strongly influenced by those of the anchors. We propose a new approach based on Raman 2D mapping to evidence the surface distribution of organosilanes, frequently used as anchors on biomaterial surfaces on hydroxyapatite and silicated hydroxyapatite ceramics. Unmodified and silanized ceramic surfaces were characterized by means of contact angle measurements, atomic force microscopy (AFM) and Raman mapping. Contact angle measurements and AFM topographies confirmed the surface modification. Raman mapping highlighted the influence of both the ceramic’s composition and silane functionality (i.e., the number of hydrolysable groups) on the silane surface distribution. The presence of hillocks was shown, evidencing a polymerization and/or an aggregation of the molecules whatever the silane and the substrates were. The substitution of phosphate groups by silicate groups affects the covering, and the spots are more intense on SiHA than on HA.

Funder

Agence Nationale de la Recherche

Publisher

MDPI AG

Subject

General Medicine

Reference52 articles.

1. Ceramic devices for bone regeneration: Mechanical and clinical issues and new perspectives;Palmero,2017

2. Third-Generation Biomedical Materials

3. Calcium Phosphate Ceramics as Hard Tissue Prosthetics

4. Structure and Chemistry of the Apatites and other Calcium Orthophosphates;Elliott,1994

5. Initial bone matrix formation at the hydroxyapatite interfacein vivo

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3