Optimal Coil Transducer Geometry for an Electromagnetic Nonlinear Vibration Energy Harvester

Author:

Vandewater Luke A.1,Moss Scott D.2,Galea Steve C.2

Affiliation:

1. Defence, Science and Technology Organisation

2. Defence Science and Technology Organization

Abstract

This paper investigates the optimisation of wire-coil transducers for a recently described strongly nonlinear electromagnetic (EM) vibration energy harvester, by coupling previously derived dynamics of the mechanical system with finite element analysis (FEA) to determine the harvesters EM response. The harvester is implemented in a permanent-magnet/ball-bearing arrangement, where vibrations in a host structure induce oscillations of the ball-bearing. The movement of the bearing changes the magnetic flux in a circular pancake wire-coil, inducing an electromotive force (EMF) in the coil and hence a voltage in the harvester circuit. A quintic-modified Duffing equation is applied to predict frequency-displacement relations for the nonlinear dynamics of the harvester. Faradays Law of Induction is implemented with quasi-static FEA modelling of the magnetic field and linked to the dynamics of the system to develop a numeric model for voltage predictions. The issue of back-EMF and damping is also investigated. A fully integrated mechanical-electromagnetic model is shown to compare well to the quasi-static numerical model. The output characteristics of the prototype harvester are then compared with the numerical model. An optimal coil height of 2 mm is predicted, and demonstrated experimentally to produce 20.3 mW from a 12 Hz, 500 milli-g host vibration. Further investigation of coil inner radius and outer radius yields a predicted resistive load power transfer increase of 18% with the optimal coil geometry.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3