Nanotechnologies of Strength Control of Materials

Author:

Nosov Victor V.1,Grigoriev Egor V.1,Peretyatko Sabina A.1,Artyushchenko Artem P.1

Affiliation:

1. Saint Petersburg Mining University

Abstract

The strength of materials is determined by their atomic molecular structure and the process of decay of atomic molecular bonds, which must be taken into account when optimizing materials strength control technologies. The fracture photomicrograph of metal microdamage of welded joint at various moments of time, a multilevel model of flow of acoustic emission signals of materials are presented. The physical meaning, the scale level of parameters included in the model are revealed. The structure of the mathematical model of the flow of AE signals with components of its informative elements of different scale level by strength characteristics of structural materials and resource of technical objects is shown. The multilevel model of the AE signal flow is hierarchically structured, obtained by generalizing deterministic-statistical variability. It describes the process of randomly recording deterministic accumulated damages in the material both before and after the formation of a crack at the stage of waiting for its next leap. It is shown that the proposed nanotechnology of strength control of materials is reduced to non-destructive determination of parameters of prognostic homogeneous destruction, identification of which is based on multilevel modeling of time dependence of micro-crack formation, formulation of criterion of strength homogeneity, registration of AE parameters related to the model of a specific product, which can be automated processing of registration results and determination of universal strength nanoconstants from already published reference data of fatigue tests of standard material samples.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3