Micro-Fibrillated Cellulose Fabrication from Empty Fruit Bunches of Oil Palm

Author:

Christwardana Marcelinus1ORCID,Handayani Aniek Sri1,Savetlana Shirley2,Lumingkewas Riana Herlina3,Chalid Muchamad3

Affiliation:

1. Institut Teknologi Indonesia

2. University of Lampung

3. Universitas Indonesia

Abstract

Micro-fibrillated celluloses (MFCs) are made from oil palm empty fruit bunches (EFB). EFB is processed through several stages of the process, including washing, alkalization, and bleaching to remove impurities, lignin, and hemicellulose. Each treatment stage was characterized by differential scanning calorimeter (DSC) and thermogravimetric (TGA) analysis. Morphological analysis was characterized using Scanning Electron Microscope (SEM). The process results show that MFC has an average length and thickness of 450 and 80 microns for coarse fibers respectively, averaging 50 and 5 microns for fine fibers, respectively. Fibrillation fibers appear on the surface of fibers which are treated using alkalization and bleaching processes. The TGA results showed a decrease in weight occurred at a temperature of 40 to 109 °C for the first stage of the heating process and at a temperature of 247 to 382 °C for the second stage. The decrease in fiber weight is caused by evaporation of water content and degradation of cellulose compounds at each stage. The glass transition temperature of MFC was obtained at 236 °C. The thermal stability of cellulose from fibers treated using alkalization and bleaching processes proved the formation of cellulose crystals. Removal of lignin and hemicellulose is shown by the absorption of O-H and C-C bonds in FTIR spectroscopy. From these results, it is stated that micro-fibrillation cellulose is formed well through a series of processes given.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3