Study on Structural and Morphological of Steam-Treated Sorghum Stalk Fiber: Enhancing Potential for Reinforcement in Polymer Composite

Author:

Rifathin Annisa1,Pratama Rai1,Nugraha Adam Febriyanto1,Laksmono Joddy Arya2,Chalid Mochamad1ORCID

Affiliation:

1. University of Indonesia

2. PUSPIPTEK National Research and Innovation Agency

Abstract

Lignocellulosic biomass, such as sorghum stalk fiber, has received a lot of interest as reinforcement in polymer composites because of its renewable nature, low cost, and potential environmental benefits. This is due to crystalline cellulose fibrils embedded in hemicellulose, lignin, wax, and other impurities in the lignocellulosic fiber. As a result, treatment to remove non-cellulosic components, expose cellulose fibrils, and improve the adhesion with polymer matrices is critical for their usage as reinforcement in polymer composites. This study investigates the effects of environmentally friendly steam treatment on sorghum stalk fiber's structural and morphological properties. Sorghum stalk fiber was subjected to steam treatment conditions at different durations. Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and sessile drop tests were used to examine the structural and morphological changes generated by steam treatment. It was observed that the steam treatment of sorghum fiber was successful in eliminating part of the amorphous lignin and hemicellulose components as well as contaminants such as wax, causing the crystallinity ratio to rise. Defibrillation also occurs, and the fiber surface becomes rougher. Due to the rough fiber surface and the space created by defibrillation, the polymer matrix can penetrate the fiber and increase its adhesion by a mechanical interlocking mechanism.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3