Effects of Pulsed and DC Body-Diode Current Stress on the Stability of 1200-V SiC MOSFET I-V Characteristics

Author:

Green Ronald1,Lelis Aivars J.1,Nouketcha Franklin L.2

Affiliation:

1. U.S. Army Research Laboratory

2. University of Maryland College Park

Abstract

1,200-V and 1,700-V SiC power MOSFETs from multiple suppliers were subject to dc and pulsed-current stress of the body-diode. Three of the five suppliers of 1,200-V devices evaluated showed no significant bipolar degradation, but the other two supplier’s devices showed varying degrees of degradation due this bipolar phenomenon. Electrical results of newly released 1,700-V devices from two suppliers showed significant degradation in the body-diode and MOSFET I-V characteristics following both dc and pulsed-current stress of their body-diodes. The electrical results presented in this work are consistent with basal plane dislocations (BPDs) that form stacking faults during forward conduction of the body-diode. Significant drift in the body-diode forward voltage and MOSFET on-resistance indicates that a much higher BPD density may be present in 1,700-V devices in comparison to the more mature 1,200-V device offerings. The likely presence of BPDs can lead to significant reliability issues in some modern SiC power MOSFETs, and their distribution seems to vary across suppliers and among devices with the same rating and from the same supplier. These differences are likely due to variations in wafer and device processing among suppliers and within a given product line from a single supplier.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference5 articles.

1. R. E. Stahlbush, et al., Mater. Sci. Forum, vols. 717-720, (2012).

2. T. Funaki, 2013 4th IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), (2013).

3. M. Skowronski and S. Ha, J. Appl. Phys., vol. 99, pp.011-101, (2006).

4. A. Agarwal, Mater. Sci Forum, vols. 556-557, p.687–692, (2007).

5. A. Agarwal, et al., IEEE Elec. Dev. Lett., vol. 28, (2007).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3