Bioactive Glass Modified Calcium Phosphate Cement with Improved Bioactive Properties: A Potential Material for Dental Pulp-Capping Approaches

Author:

Davaie Sotoudeh1,Shahabi Sima1,Behroozibakhsh Marjan1ORCID,Vali Sanaz1,Najafi Farhood2

Affiliation:

1. Tehran University of Medical Sciences

2. Institute for Color Science and Technology

Abstract

Direct pulp capping (DPC) is one of the treatment plans for deep caries with mechanical pulp exposure that can replace invasive treatments. This study aimed to assess the apatite-forming ability and solubility of a calcium phosphate cement (CPC) modified with bioactive glass (BG) as a potential bioactive material for DPC.Three different biomaterials including CPC, BG, and CPC/BG composite were used in this study. For bioactivity evaluation, specimens were immersed in simulated body fluid (SBF) for 5 time periods (3, 7, 14, 21 and 28 days). The samples were analyzed by SEM, EDS and XRD to confirm the formation of hydroxyapatite. The solubility was calculated by measuring the initial and final mass according to the ISO 6876 specifications.According to the results of this study, SEM observations and XRD analysis revealed higher formation of hydroxyapatite crystals in the CPC/BG Group and also at the shorter time than those in the CPC and BG groups. Concerning solubility, the CPC group showed the most solubility after 7 days and the BG group showed the lowest one. At this time the difference between CPC and BG groups was statistically meaningful (p value=0.003). After 30 days the CPC/BG group exhibited the lowest solubility value. At the day 30, the CPC and BG groups showed significant difference in their solubility (p value=0.04).).Based on the results, addition of BG to CPC improved bioactivity properties of CPC material and did not affect its solubility adversely. The CPC/BG composite seems to be a promising material for DPC. Further in vivo studies are needed to prove its clinical success.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3