Synthesis and characterization of a calcium phosphate bone cement with quercetin-containing PEEK/PLGA microparticles

Author:

Kiakojoori Kiana,Najafi Farhood,Torshabi Maryam,Kazemi Sohrab,Rabiee Sayed MahmoodORCID,Nojehdehian HaniehORCID

Abstract

Abstract This study aimed to describe the synthesis and characterization of a calcium phosphate cement (CPC) with polyetheretherketone/poly (lactic-co-glycolic) acid (PEEK/PLGA) micro-particles containing quercetin. CPC powder was synthesized by mixing dicalcium phosphate anhydrate and tetracalcium phosphate. To synthesize PEEK/PLGA microparticles, PLGA85:15 was mixed with 90 wt% PEEK. The weight ratio of quercetin/PLGA/PEEK was 1:9:90 wt%. PEEK/PLGA/quercetin microparticles with 3, 5, and 6 wt% was added to CPC. The setting time, compressive strength, drug release profile, solubility, pH, and porosity of synthesized cement were evaluated. The morphology and physicochemical properties of particles was analyzed by scanning electron microscopy, Fourier-transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), and inductively coupled plasma. Cytotoxicity was assessed by the methyl thiazolyl tetrazolium assay using dental pulp stem cells. Expression of osteoblastic differentiation genes was evaluated by real-time polymerase chain reaction. Data were analyzed by one-way ANOVA and Tukey’s test (alpha = 0.05). The setting time of 3 wt% CPC was significantly longer than 5 and 6 wt% CPC (P < 0.001). The 6 wt% CPC had significantly higher compressive strength than other groups (P = 0.001). The release of quercetin from CPCs increased for 5 d, and then reached a plateau. XRD and FTIR confirmed the presence of hydroxyapatite in cement composition. Significantly higher expression of osteocalcin (OCN) and osteopontin (OPN) was noted in 3 wt% and 6 wt% CPCs. Addition of quercetin-containing PEEK/PLGA microparticles to CPC enhanced its compressive strength, decreased its setting time, enabled controlled drug release, and up-regulated OPN and OCN.

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

Reference55 articles.

1. A natural bone Cement-a laboratory novelty led to the development of revolutionary new biomaterials;Chow;J. Res. Natl Inst. Stand. Technol.,2001

2. A new calcium phosphate, water-setting cement;Brown,1987

3. A new calcium phosphate setting cement;Brown;J. Dent. Res.,1983

4. Solubilities of phosphates and other sparingly soluble compounds;Brown,1973

5. BoneSource™ hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction;Friedman;J. Biomed. Mater. Res.,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3