Analysis of Kinematics and Design of Structure Parameters for a Bionic Parallel Leg

Author:

Cui Bing Yan1,Chen Li Wen1

Affiliation:

1. Hebei United University

Abstract

This paper proposed a novel bionic walking leg which has three branches of 6-DOF, using 3-UPS parallel mechanism as the prototype, it has good advantage of compact structure and strong bearing capacity. Kinematics research of mechanism is very important, the dynamic analysis and the design are based on kinematics analysis. And the kinematics performance of the bionic walking leg is analyzed and the structure parameters are optimized. First, the kinematics transmission equation of the bionic walking leg is established, and using the norm theory the kinematics performance evaluation indexes are defined, and kinematics characteristics are analyzed. Then, application space model theory the structure parameters of the bionic walking leg are designed, and using of the Monte Carlo parameters selecting method based on the global kinematics performance atlas, the optimal structural parameters are given. Analysis results show that kinematics transmission performance indexes display the symmetric distribution of the bionic walking leg, the static platform radius is 120mm, moving platform radius is 50mm, and the height of the static platform and moving platform initial posture is 700mm. Finally, using the optimal structural size parameters, the virtual prototype of the bionic walking leg is designed. So,it has very important significances of theory and engineering to study and open out parallel mechanisms as the leg mechanisms of bionic walking legs.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Kinematic Decoupling Analysis and Design of a Biomimetic Robotic Elbow Joint;Applied Bionics and Biomechanics;2018

2. Analysis of Statics and Design of Structur Parameters for a Bionic Robot Hip Joint;Journal of Biomimetics, Biomaterials and Biomedical Engineering;2015-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3