Performance Evaluation of InGaAs Dielectric Engineered Tunnel Field-Effect Transistors

Author:

Azam Sayed Mohammad Tariful1,Bakibillah A.S.M.2,Kamal M.A.S.3

Affiliation:

1. Technische Universität Kaiserslautern

2. American International University-Bangladesh

3. Gunma University

Abstract

In this paper for the first time, the performance of Dielectric Engineered Tunnel Field Effect Transistors (DE-TFETs) is evaluated on the InGaAs channel. Two DE-TFETs based on gate-dielectric structures, namely, Device-A and Device-B are modeled and characterized for both n-type and p-type operations to attain low subthreshold slope (SS) and drain induced barrier lowering (DIBL) using La2O3 as high-k gate dielectric. A structural modification of Device-B is illustrated that improves the on-state current (Ion), SS, and DIBL. Then, performance of both devices are analyzed based on physical oxide thickness (Tox). The simulation results show that the modified Device-B has the lowest SS of 15.31 mV/dec and 54.64 mV/dec, Ion/Ioff ratio of ~109 and ~106 with off-state current (Ioff) of ~10-15 A/µm and ~10-12 A/µm for n-DE-TFET and p-DE-TFET, respectively. Furthermore, the performance parameters of both devices are studied for digital and analog applications and it is found that the modified Device-B can be a potential candidate for future digital applications due to its low power dissipation of 13.55 µW/µm and 27.56 µW/µm for n-DE-TFET and p-DE-TFET, respectively. On the other hand, Device-A shows high transconductance (gm) of 722.52 µS/µm and 424.3 µS/µm and cut-off frequency (fT) of 211.95 GHz and 290.86 GHz for n-DE-TFET and p-DE-TFET, respectively, and can be a viable candidate for future low power analog applications.

Publisher

Trans Tech Publications, Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3