Use of Vanadium Doping for Compensated and Semi-Insulating SiC Epitaxial Layers for SiC Device Applications

Author:

Krishnan Bharat1,Thirumalai Rooban Venkatesh K.G.1,Kotamraju Siva Prasad1,Merrett Joseph Neil2,Koshka Yaroslav1

Affiliation:

1. Mississippi State University

2. Wright-Patterson Air Force Base

Abstract

Vanadium doping from SiCl4 source during epitaxial growth with chlorinated C and Si precursors was investigated as a mean of achieving compensated and semi-insulating epitaxial 4H-SiC layers for device applications. Thin epilayers were grown at 1450°C with a growth rate of ~6 μm/h. Experiments at 1600°C resulted in the growth rates ranging from 60 to 90 µm/h producing epilayers with thickness above 30 µm. V concentrations up to about 1017cm-3 were found safe for achieving defect-free epilayer surface morphology, however certain degradation of the crystalline quality was detected by XRD at V concentrations as low as 3-5x1015 cm-3. Controllable compensation of nitrogen donors with V acceptors provided low-doped and semi-insulating epitaxial layers. Mesa isolated PiN diodes with V-acceptor-compensated n- epilayers used as drift regions showed qualitatively normal forward- and reverse-bias behavior.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3