Growth of vanadium doped semi-insulating 4H-SiC epilayer with ultrahigh-resistivity

Author:

Kojima Kazutoshi1ORCID,Sato Shin-ichiro2ORCID,Ohshima Takeshi2ORCID,Kuroki Shin-Ichiro3ORCID

Affiliation:

1. Advanced Power Electronics Research Center, National Institute of Advanced Industrial Science and Technology, Central 2 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan

2. Quantum Materials and Applications Research Center, National Institutes for Quantum Science and Technology, Takasaki, Gunma 370-1292, Japan

3. Research Institute for Nanodevice, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima 739-8527, Japan

Abstract

4H-SiC epitaxial layers with ultrahigh resistivity of over 1010 Ω cm were successfully grown by using a hot wall chemical vapor deposition system with vanadium doping. The resistivity of the vanadium doped epilayer was found to be strongly dependent on the types of dopant impurities. The resistivity of n-type-based vanadium doped semi-insulating 4H-SiC epilayers showed stronger dependence on vanadium incorporation than that of p-type-based epilayers. This means that the carrier trap characteristics of vanadium atoms may differ with respect to electrons and holes. As the result, an ultrahigh resistivity of over 1010 Ω cm was realized on an n-type-based 4H-SiC epilayer with vanadium doping.

Funder

Japan Society for the Promotion of Science

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Reference51 articles.

1. See https://ukcop26.org/ for information about the global carbon neutral.

2. Effect of Doping Concentration in Buried-Channel NMOSFETs on Electrical Properties of 4H-SiC CMOS Devices

3. M. Barlow, A. M. Francis, N. Chiolino, J. Holmes, A. Abbasi, and H. A. Mantooth, in 31st Annual IEEE Applied Power Electronics Conference and Exposition (IEEE, 2016), p. 1646.

4. Demonstration of 4H-SiC CMOS circuits consisting of well-balanced n- and p-channel MOSFETs fabricated by ultrahigh-temperature gate oxidation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3