Affiliation:
1. Sheffield Hallam University
2. University of Canterbury
3. University of Bristol
Abstract
Admittance spectroscopy (AS) and deep level transient spectroscopy (DLTS) have been applied to B-doped thin polycrystalline diamond films deposited on p+-silicon by hot filament chemical vapour deposition. Films with two boron concentrations (1.5×10^19 cm-3 and 4×10^19 cm-3) were selected to study the effect of B concentration on the electronic states in CVD-diamond. We have investigated whether these deep states arise from point or extended defects. DLTS and AS find two hole traps, E1 (0.29±0.03 eV) and E2 (0.53±0.07 eV), in both films. A third level, E3 (0.36±0.02 eV) was also detected in the more highly doped film. The defect levels E1 and E2 exhibited behaviour typical of extended defects, which we suggest may be due to B segregated to the grain boundaries. In contrast, the defect level E3 exhibited behaviour characteristic of an isolated point defect, which we attribute to B-related centres in bulk diamond.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献