A Misorientation Dependent Criterion of Crack Opening in FCC Single Crystal

Author:

Huynh Nam N.1,Lu Cheng1,Michal Guillaume1,Tieu A. Kiet1

Affiliation:

1. University of Wollongong

Abstract

This paper proposes a criterion for crack opening in FCC single crystals based on analyses of lattice orientation and interface energy of two adjacent crystals in a crystal plasticity finite element model (CPFEM). It also demonstrates the implementation of the criterion in Abaqus/Standard to simulate crack initiation and propagation in single-edged notch single crystal aluminium samples. Elements in the FEM mesh that have crystalline structures satisfying the crack opening criterion are removed from the mesh at the end of every loading step and FEM analyses are restarted on the new mesh in the next loading step. Removed elements effectively act as voids in the material due to crack nucleation. Similarly, the coalescence of newly removed elements at the end of a loading step with the existent ones simulates crack growth in the material. Two advantages of this approach are noted. Firstly, crack nucleation and its subsequent growth in the material is simulated solely based on lattice evolution history in the material without any presumptions of crack paths or regions where cracks are likely to occur. Secondly, as the criterion for crack nucleation is evaluated based on, and thus changes with, the lattice evolution during loading, a predefined energy criterion for crack opening, which could be erroneous, is avoided. Preliminary results of void nucleation and void growth around the notch tip in Cube and Brass oriented samples using CPFEM modelling appear to agree with molecular dynamics simulations of void growth in FCC single crystals.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3