A Dislocation Model for Fatigue Crack Initiation

Author:

Tanaka K.1,Mura T.1

Affiliation:

1. Materials Research Center and Department of Civil Engineering, The Technological Institute, Northwestern University, Evanston, Ill. 60201

Abstract

The slip band formed in a grain on the material surface is a preferential site for crack initiation during low strain fatigue of polycrystalline metals. The forward and reverse plastic flow within the slip band is modeled in the present study by dislocations with different signs moving on two closely located layers, and it is assumed that their movement is irreversible. Based on the model, the monotonic buildup of dislocation dipoles piled up at the grain boundary is systematically derived using the theory of continuously distributed dislocations. This buildup is associated with the progress of extrusion or intrusion. The number of stress cycles up to the initiation of a crack of the grain size order is defined as the cycle when the stored strain energy of accumulated dislocations reaches a critical value. The relation between the initiation life and the plastic strain range derived theoretically is in agreement with a Coffin-Manson type law, and that between the fatigue strength and the grain size is expressed in an equation of the Petch type.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3