Dicing of SiC Wafer by Atmospheric-Pressure Plasma Etching Process with Slit Mask for Plasma Confinement

Author:

Sano Yasuhisa1,Nishikawa Hiroaki1,Okada Yuu1,Yamamura Kazuya1,Matsuyama Satoshi1,Yamauchi Kazuto1

Affiliation:

1. Osaka University

Abstract

Silicon carbide (SiC) is a promising semiconductor material for high-temperature, high-frequency, high-power, and energy-saving applications. However, because of the hardness and chemical stability of SiC, few conventional machining methods can handle this material efficiently. A plasma chemical vaporization machining (PCVM) technique is an atmospheric-pressure plasma etching process. We previously proposed a novel style of PCVM dicing using slit apertures for plasma confinement, which in principle can achieve both a high removal rate and small kerf loss, and demonstration experiments were performed using a silicon wafer as a sample. In this research, some basic experiments were performed using 4H-SiC wafer as a sample, and a maximum removal rate of approximately 10 μm/min and a narrowest groove width of 25 μm were achieved. We also found that argon can be used for plasma generation instead of expensive helium gas.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3