High-Speed Dicing of SiC Wafers with 0.048 mm Diamond Blades via Rolling-Slitting

Author:

Feng Yuanru,Li Kenan,Dou Zhen,Zhang Zhengwen,Guo Bing

Abstract

In this study, an innovative fabrication method called rolling-slitting forming, which forms ultra-thin diamond blades, was presented for the first time. Furthermore, the feasibility of the rolling-slitting forming method when applied to silicon carbide wafer dicing blades was investigated; moreover, the cold-pressing blade samples were manufactured through the conventional process under the same sintering conditions to compare and analyze the manufacturing efficiency, organization and performance. The results show that the new method achieves high-precision and low-thickness dicing blades through continuous production without molds—with the thinnest blades being 0.048 mm thick. Furthermore, the rolling-slitting blade has a unique multiporous heat-conductive matrix structure and in-situ generated amorphous pyrolytic carbon, which can reduce the dicing resistance and contribute to a better cutting quality. In addition, the effects of the dicing parameters on SiC were investigated by using indications of spindle current, dicing chipping size and kerf width during the high dicing process. For a dicing depth of 0.2 mm, the ideal performance of dicing SiC with an ultra-thin blade was achieved at a spindle speed of 22,000 rpm and a feed rate of 5 mm/s. This research provides a new idea for the manufacturing of dicing blades, which can satisfy the demand for ultra-narrow dicing streets of high integration of ICs.

Funder

Enterprise Innovation and Development Joint Program of the National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Materials Science

Reference43 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3