Affiliation:
1. University of Castilla-La Mancha
2. University of Extremadura
3. Universty of Extremadura
Abstract
On-line monitoring systems eliminate the need for post-process evaluation, reduce production time and costs, and enhance automation of the process. The cutting forces, mechanical vibration and acoustic emission signals obtained using dynamometer, accelerometer, and acoustic emission sensors respectively have been extensively used to monitor several aspects of the cutting processes in automated machining operations. Notwithstanding, determining the optimum selection of on-line signals is crucial to enhancing system optimization requiring a low computational load yet effective prediction of cutting process parameters. This study assess the contribution of three types of signals for the on-line monitoring and diagnosis of the surface finish (Ra) in automated taper turning operations. Systems design were based on predictive models obtained from regression analysis and artificial neural networks, involving numerical parameters that characterize cutting force signals (Fx, Fy, Fz), mechanical vibration (ax, ay, az), and acoustic emission (EARMS).
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献