Machining Process Monitoring and Control: The State-of-the-Art

Author:

Liang Steven Y.1,Hecker Rogelio L.2,Landers Robert G.3

Affiliation:

1. Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332-0405

2. Facultad the Ingenieria, Universidad Nacional de La Pampa, General Pico, LP, 6360, Argentina

3. Department of Mechanical and Aerospace Engineering, University of Missouri–Rolla, Rolla, MO 65409-0050

Abstract

Research in automating the process level of machining operations has been conducted, in both academia and industry, over the past few decades. This work is motivated by a strong belief that research in this area will provide increased productivity, improved part quality, reduced costs, and relaxed machine design constraints. The basis for this belief is two-fold. First, machining process automation can be applied to both large batch production environments and small batch jobs. Second, process automation can autonomously tune machine parameters (feed, speed, depth of cut, etc.) on-line and off-line to substantially increase the machine tool’s performance in terms of part tolerances and surface finish, operation cycle time, etc. Process automation holds the promise of bridging the gap between product design and process planning, while reaching beyond the capability of a human operator. The success of manufacturing process automation hinges primarily on the effectiveness of the process monitoring and control systems. This paper discusses the evolution of machining process monitoring and control technologies and conducts an in-depth review of the state-of-the-art of these technologies over the past decade. The research in each area is highlighted with experimental and simulation examples. Open architecture software platforms that provide the means to implement process monitoring and control systems are also reviewed. The impact, industrial realization, and future trends of machining process monitoring and control technologies are also discussed.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 252 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3