Affiliation:
1. South China University of Technology
2. Guangdong University of Technology
Abstract
After analyzing the influencing factors of flexible workpiece path(FWP) process deformation, this article proposes the basic conception of process deformation intelligent forecasting and compensation, start from the process modeling method of Takagi-Sugeno fuzzy neural network, to modify the classic FNN model and construct the multiple input/output TS-FNN model for FWP process control; with LMS law and steepest descent method, antecedent network membership function parameter adjustment and descent network parameter study method of TS-FNN model is deduced; finally to carry on comprehensive simulation on TS-FNN model, the result shows the constructed model is better than BP neural network and RBF neural network for an order of magnitude on predication accuracy; in the quilting process of flexible objects, compensated by TS-FNN, the path processing obtains good approaching effect, testing result indicates that the position error scope of quilting is from 0.078 to 0.162(mm), the accuracy is higher than excellence grade of quilting which refers to national standard FZ/T81005-2006.
Publisher
Trans Tech Publications, Ltd.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献