Study and Testing of Processing Trajectory Measurement Method of Flexible Workpiece

Author:

Deng Yaohua1ORCID,Chen Sicheng1,Li Bingjing1,Chen Jiayuan1,Wu Liming1

Affiliation:

1. Guangdong University of Technology, Guangzhou Higher Education Mega Center, No.100 Waihuanxi Road, Mailbox B65, Guangdong 510006, China

Abstract

Flexible workpiece includes the materials like elasticity spline, textile fabric, and polyurethane sponge, due to the fact that processing trajectory is composed by small arc or small line segment primitives and the deformation of the flexible workpiece during the processing trajectory, making the captured image of processing trajectory not clear, the edge of processing image over local uneven gray, and also the pixels of boundaries between the processing trajectory image edge and background organizations not obvious. This paper takes corner search of processing trajectory as the cut-in-point, slope angle curve of starting and terminal point of each primitive is also designed, put forward the search algorithm that regards Daubechies (4) as wavelet operator to conduct slope angle curve for multiple scales wavelet transform, by judging whether there is a point of the curve appears wavelet transform extremum to determine whether the point is a corner point based on wavelet edge modulus maxima extract principle. Finally, proposed a decomposition/reconstruction design method of FIR filters based on wavelet transform of processing image. Eight-tap transpose FIR filter is used to design the decomposition of Daubechies (4) and reconfigurable computing IP core. The IP core wavelet decomposition of the total time-consuming increases only 5.561% in comparsion with PC. Trajectory angle relative error is 2.2%, and the average measurement time is 212.38 ms.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3