Abstract
FMM is an efficient algorithm in computing N-body problem. This paper firstly subdivides the FMM into 10 procedures. Based on the analysis the computing type of each procedure, we choose key procedures accelerated on FPGA, GPU and Cell BE. And then we present the speedup ratio of each accelerated procedure through experiments. Finally we analyze the computing characteristic of FMM on the computing architecture on accelerator FPGA and GPU on the side of P, M and C.
Publisher
Trans Tech Publications, Ltd.
Reference9 articles.
1. L. Greengard and V. Rokhlin: J. Comput. Phys. Vol. 73 (1987), p.325.
2. M. Knepley: Software Design for PDEs on GPUs, on http: /www. ima. umn. edu/2010-2011 /W1. 10-14. 11/activities/ Knepley-Matthew/IMA10. pdf.
3. K. Xu, D. Z. Ding, Z. H. Fan, and R. S. Chen: Microwave and Optical Technology Letters, Vol. 53 (2010), p.502.
4. F. A. Cruz, M. G. Knepley, L. A. Barba: PetFMM-A dynamically load-balancing parallel fast multipole library, arXiv : 0905. 2637v1 (2009).
5. L. Ying, G. Biros and D. Zorin: J. Comput. Phys. Vol. 196 (2004). P. 1.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献