Parametric Study of Nanoparticles Effects on Convective Heat Transfer of Nanofluids in a Heated Horizontal Annulus

Author:

Benkhada Mohamed1,Bensouici Fayçal2ORCID,Boufendi Toufik3

Affiliation:

1. University M’Hamed Bougara of Boumerdes

2. Abbas Laghrour University

3. University of Constantine1

Abstract

This paper reports the results of a numerical study on the thermal performance of forced convection laminar flow of nanofluids flowing through a heated horizontal annular duct considering various nanoparticles types has been investigated. A numerical study is carried out for an annular duct filled with ordinary water, and three nanoparticles types of titanium dioxide (TiO2), alumina (Al2O3) and copper (Cu) formed three different nanofluids. The outer cylinder is heated by a uniform and constant heat flux while the inner cylinder is thermally insulated. A numerical solution of the partial differential equations of dimensionless cylindrical coordinates associate with boundary conditions are discretized by the finite volume technique with a second-order precision and solved via a FORTRAN program. Impacts of diverse parameters of the study such as nanoparticles volume fraction from 0 to 6% of titanium dioxide, alumina, copper, and Reynolds number on the thermal and hydrodynamic characteristic are examined. The axial and average Nusselt number increases with increasing nanoparticle concentration and Reynolds number. In addition, the skin friction coefficient decreases with increasing Reynolds number. Also, no significant effect on the skin friction coefficient with the increase in nanoparticle concentration. Furthermore, the improvement was seen higher when using nanofluids made of copper (Cu).

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3