Thermal Performance in Convection Flow of Nanofluids Using a Deep Convolutional Neural Network

Author:

Hua YueORCID,Peng Jiang-ZhouORCID,Zhou Zhi-Fu,Wu Wei-Tao,He Yong,Massoudi MehrdadORCID

Abstract

This study develops a geometry adaptive, physical field predictor for the combined forced and natural convection flow of a nanofluid in horizontal single or double-inner cylinder annular pipes with various inner cylinder sizes and placements based on deep learning. The predictor is built with a convolutional-deconvolutional structure, where the input is the annulus cross-section geometry and the output is the temperature and the Nusselt number for the nanofluid-filled annulus. Profiting from the proven ability of dealing with pixel-like data, the convolutional neural network (CNN)-based predictor enables an accurate end-to-end mapping from the geometry input and the desired nanofluid physical field. Taking the computational fluid dynamics (CFD) calculation as the basis of our approach, the obtained results show that the average accuracy of the predicted temperature field and the coefficient of determination R2 are more than 99.9% and 0.998 accurate for single-inner cylinder nanofluid-filled annulus; while for the more complex case of double-inner cylinder, the results are still very close, higher than 99.8% and 0.99, respectively. Furthermore, the predictor takes only 0.038 s for each nanofluid field prediction, four orders of magnitude faster than the numerical simulation. The high accuracy and the fast speed estimation of the proposed predictor show the great potential of this approach to perform efficient inner cylinder configuration design and optimization for nanofluid-filled annulus.

Funder

Natural Science Foundation of Jiangsu Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3