Affiliation:
1. Jungwon University
2. Inha Technical College
Abstract
To integrate circuits into the organic light emitting diode displays, it is necessary to fabricate polycrystalline silicon (poly-Si) based thin-film transistors (TFTs) on the glass substrates. In this work we investigated the correlation between the electrical characteristics and the poly-Si morphology of the excimer laser annealed (ELA) TFTs in ultralow oxygen concentrations (~ ppm). The main feature of ELA poly-Si films is the protrusion at grain boundaries that makes the film surface rough. The surface roughness increases with an increasing oxygen concentration during the laser annealing and degrades the TFT characteristics in the on-state as well as the breakdown voltage of the gate insulator, while the off current is independent of process conditions. This result is attributed to the increased oxygen incorporation in the film in the case of an ELA process. Since oxygen increased the defect density in the polysilicon bandgap, controlling the oxygen concentrations in the process chamber helped to improve the performance of the ELA poly-Si TFTs. Based on these results, we discuss the relationship between performance of active matrix organic light emitting display panels and oxygen concentrations during ELA.
Publisher
Trans Tech Publications, Ltd.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献