Biological Activity of Gold Nanoparticles towards Filamentous Pathogenic Fungi

Author:

Savi Geovana Dagostim1,da Silva Paula Marcos Marques2,Possato Jonathann Corrêa2,Barichello Tatiana2,Castagnaro Denise1,Scussel Vildes Maria1

Affiliation:

1. Federal University of Santa Catarina

2. University of Southern Santa Catarina

Abstract

Gold nanoparticles (GNP) were synthesized, characterized and their antifungal activities investigated against three pathogenic fungi of different genera and species (Fusarium verticillioides,Penicillium citrinumandAspergillus flavus). The anti-fungi treatments efficiency of the GNP (concentrations: 0, 0.05, 0.1 and 0.2 mg L-1in PDA media) were evaluated at 2, 4, 6 and 8 days after incubation by measuring the diameter of fungal colonies and investigating fungi structure alterations by scanning electron microscopy (SEM). It was observed that the GNP concentration increased, fungal colony growth diameter reduced. However, the highest GNP concentration applied in the experiment was not able to completely inhibit fungal growth. The SEM analysis of the fungi structure Au treated showed damaged hyphae and unusual bulges that were not observed in fungi that growth on medium without treatment (Control). Although up to the highest concentration of GNP media applied did not completely inhibited fungi growth, the hyphae modifications led growth reduction which could influence the toxins production by these fungi.

Publisher

Trans Tech Publications, Ltd.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3