Semi-Quantitative Analysis of Defect in Pipelines through the Use of Technique of Ultrasonic Guided Waves

Author:

Tse Peter W.1,Wang Xiao Juan1

Affiliation:

1. City University of Hong Kong

Abstract

Modernized cities must have adequate infrastructures to support the daily needs from her citizens. The continuity in pipeline services that supply water, gas and oil to citizens and deliver wastes to designated collectors are in prime concern to any modernized city. However, in-service pipeline is prone to defects due to aging, external impacts, or hazardous operating environment. It is of prime importance to apply an efficient inspection method to characterize the potential defect in pipeline so that the information of damage caused can be determined prior to the fatal rupture of pipeline. An early warning generated from an accurate characterization of defect can encourage the performance of proper remedy and maintenance for minimizing the scope of damage to pipelines. In this paper, a presentation is given to an advanced inspection technique based on ultrasonic guided waves. This technique has already shown great potentials in non-destructive testing of material and structures in many fields. The advantages and difficulties involved in the pipeline inspection using ultrasonic guided waves have been identified. For the quantitative characterization of defect in pipeline inspection based on advanced guided waves, we propose the method through considering the reflected signal since it provides useful information related to defect. The method analyzes the captured signals reflected from the potential defect, decomposes the embedded dimensional information of defect and then accordingly identifies its severity. Although the experiments were conducted on artificial defects, the results proved that qualitative characterization of defect is feasible. Combined with guided waves, our method can provide comprehensive information related to the existence, location, severity of defect etc., through the analysis of reflected signal from the interactions of excited guided waves with pipeline defect.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference9 articles.

1. T. Tsubouchi, S. Takaki, Y. Kawaquchi, and S. Yuta: Proceedings of IEEE/RSJ International conference, Takamatsu, Japan, (2000).

2. M. Lee, J. Lee and Y. Park: Key engineering materials, Vol. 270-273(2004), p.525.

3. K. Mandal, D. Dufour, and D. L. Atherton: IEEE Transactions on Magnetics, Vol. 35(1999), p. (2007).

4. D. L. Atherton: IEEE Transactions on Magnetics, Vol. 31(1995), p.4142.

5. D. N. Alleyne, B. Pavlakovic, M. Lowe and P. Cawley: Key engineering material, Vol. 270-273(2004), p.434.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3