Damage Localization in Pressure Vessel by Guided Waves Based on Convolution Neural Network Approach

Author:

Hu Chaojie1,Yang Bin1,Yan Jianjun1,Xiang Yanxun1,Zhou Shaoping1,Xuan Fu-Zhen2

Affiliation:

1. School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China

2. School of Mechanical and Power Engineering, East China University of Science and Technology, No. 130, Meilong Road Shanghai 200237, China

Abstract

Abstract This paper investigates the damage localization in a pressure vessel using guided wave-based structural health monitoring (SHM) technology. An online SHM system was developed to automatically select the guided wave propagating path and collect the generated signals during the monitoring process. Deep learning approach was employed to train the convolutional neural network (CNN) model by the guided wave datasets. Two piezo-electric ceramic transducers (PZT) arrays were designed to verify the anti-interference ability and robustness of the CNN model. Results indicate that the CNN model with seven convolution layers, three pooling layers, one fully connected layer, and one Softmax layer could locate the damage with 100% accuracy rate without overfitting. This method has good anti-interference ability in vibration or PZTs failure condition, and the anti-interference ability increases with increasing of PZT numbers. The trained CNN model can locate damage with high accuracy, and it has great potential to be applied in damage localization of pressure vessels.

Funder

National Key Technology R D Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3