Investigation of Process Parameters in Superplastic Forming of Mechanical Pre-Formed Sheet by FEM

Author:

Liu Jun1,Tan Ming Jen1,Castagne Sylvie1ORCID,Aue-U-Lan Yingyot2,Fong Kai Soon3,Jarfors Anders W.E.3

Affiliation:

1. Nanyang Technological University

2. Singapore Institute of Manufacturing Technology (SIMTech)

3. Singapore Institute of Manufacturing Technology

Abstract

Conventional superplastic forming has been applied in automotive and aerospace industries for a few decades. Recently, superplastic forming combined with mechanical pre-forming process has been reported to be capable of forming non-superplastic AA5083 at 400 °C to a surface expansion of 200 % [1]. In this paper, finite element modeling (FEM) was used to develop the combined forming process by using the non-superplastic material AA5083-O. The simulation follows the experimental sequence and was divided into two phases (mechanical pre-forming and superplastic forming). A conventional creep equation based on tensile test data was adopted as a material model for the simulation. The pressure cycle and forming time was simulated according to the actual process route. The thickness distributions obtained from simulation validated the capability of the model to be used for this case. The influence of different parameters, such as holder force, friction, and punch depth was investigated by comparing the final sheet thickness and level of material draw-in. It was found that the punch depth played a significant effect on the uniformity of thickness distribution, from which a more uniform formed part can be obtained by using the punch with higher depth during mechanical pre-forming phase.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3