EBSD Study of Microstructural Development during Superplastic-Like Forming

Author:

Liu Jun1,Tan Ming Jen1ORCID,Castagne Sylvie1ORCID,Lim Samuel Chao Voon2

Affiliation:

1. Nanyang Technological University

2. Singapore Institute of Manufacturing Technology

Abstract

Superplastic-like forming takes advantages of both deep drawing and bulge forming. The use of non-superplastic grade materials enables it to be more compatible with existing forming process with less material and time cost. Here, a non-isothermal heating system was adopted to selectively heat up selected localized areas to form the workpiece more efficiently. Electron backscattered diffraction (EBSD) was then used to investigate the wide range of grains in the formed samples resulting from elevated-temperature and large-strain deformation. The crystallographic textures of the material before and after deformation were observed for comparison. Very little recrystallization was found in the midst of the deformed grains. Considerable amount of elongated grains with high angle boundaries were produced during deformation. Many subgrain boundaries have developed within the big grains due to dynamic recovery.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3