Microfabricated Fiber Probe by Combination of Electric Arc Discharge and Chemical Etching Techniques

Author:

Mukhtar Wan Maisarah1,Menon P. Susthitha1,Shaari Sahbudin1

Affiliation:

1. Universiti Kebangsaan Malaysia

Abstract

In this study, optical fiber probes were fabricated by combination of electric arc discharge and chemical etching techniques. Size of tips diameters fabricated using different etching solutions were observed. When the optical fibers were pulled and heated by the electric arc discharge using a fusion splicer, fiber tips with few microns in diameter were obtained. To minimize the tips diameter, the pulled fiber probes were etched vertically for 10 minutes using two different etching solutions namely 49% HF and HF buffer solution (49% HF and 40% NH4F) with ratio of 2:1. A thick overlayer was added on top of the HF solution to prevent dangerous vapors escape to the environment. When the tapered part of the pulled fiber (FP1) was dipped into 49% HF solution, the diameter of tip was slightly decreased from 4.41μm to 1.31μm with etching rate of 5.17x10-3 μms-1. When the pulled fiber (FP2) was etched into HF buffer solution, the etching rate was increased up to 52.35% with the etching rate of 10.85x10-3μms-1. The tip diameter was reduced from 7.01μm to 468.9 nm in diameter. Combination of “heat and pull” technique with chemical etching by using HF buffer solution produced fiber probe with small tip diameter.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference11 articles.

1. W. M. Mukhtar, P. S. Menon and S. Shaari: submitted to ICMENS (2011).

2. W. M. Mukhtar, P. S. Menon and S. Shaari: submitted to AMEE (2012).

3. W. M. Mukhtar, S. Shaari and P. Susthitha Menon: SCOReD 2010, p.104.

4. W. M. Mukhtar, P. S. Menon and S. Shaari: submitted to NNS (2011).

5. H. Ren, C. Jiang, W. Hu, M. Gao, J. Wang, H. Wang, J. He and E. Liang: Optics & Laser Technology, Vol. 39 (2007), p.1025.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3