Graphene Based Macrobend Unclad SMF for Monitoring pH Level in Aqueous Environment

Author:

Mukhtar Wan Maisarah1,Latib Siti Nadiah1,Halim Razman Mohd2,Rashid Affa Rozana Abdul1

Affiliation:

1. Universiti Sains Islam Malaysia (USIM)

2. SIRIM Berhad

Abstract

Partial unclad fibers with diameters ranging from d=121μm to d=125μm were fabricated using standard telecommunications optical fiber (SMF28) via low cost mechanical swipe-off technique. Graphene oxide (GO) was deposited using drop casting method on the outer side of the partial unclad SMF. IR laser with excitation wavelengths of λ=1310nm and λ=1550nm were launched along the graphene-coated SMF. The sensitivity of graphene based macrobend unclad SMFs were investigated by introducing two different pH of aqueous environment with values of 3.5 (acidic) and 12.5 (alkaline) that acted as sensing media. The optimum power loss was obtained as smallest diameter of partial unclad SMF with d=121μm was appointed. As uncoated SMF was replaced with the GO coated SMF which had been immersed into 3.5pH liquid solution, it was found that the optical power losses were increased about 6.79dBm and 5.15dBm using laser with λ1=1310nm and λ2=1550nm respectively. The uncoated SMFs experienced the increment of power losses about 2.11dBm and 5.15dBm as they were soaked into the solution with pH=12.5 using similar laser of λ1 and λ2. It is noteworthy to highlight the significant of graphene’s employment on macrobend unclad SMF by using λ1=1310nm in which better sensitivity and selectivity represented by maximum changes of power losses were apparently observed for both solutions. The usage of λ=1550nm exhibited poor selectivity where the partial unclad SMF unable to differentiate two contrasting pH solution. In conclusion, graphene based macrobend fiber optic sensor for pH detection was successfully developed by employing partial unclad SMF with cladding diameter of d=121μm and laser wavelength of λ=1310nm due to the enhancement of evanescent field’s strength.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3