Experimental Study on Bending Creep Behavior of Modified Fast-Grown Poplar Wood in Uncontrolled Condition

Author:

Yue Kong1,Liu Wei Qing1,Lu Xiao Ning2,Lu Wei Dong1

Affiliation:

1. Nanjing University of Technology

2. Nanjing Forestry University

Abstract

Three material properties (density, modulus of elasticity, bending creep deflection) of poplar wood modified with low molecular resin was examined and evaluated by an experimental approach. Poplar specimens were treated to achieve full penetration using a vacuum schedule with different low molecular resins. These resins were urea-formaldehyde (UF) and phenol-formaldehyde (PF) prepolymer solution. Creep tests were conducted under a varying climate with 16 °C ~ 31 °C and 40 % ~ 80 % relative humidity. The specimens were loaded in bending for approximately 140 days. Then the curves of the creep tests were analyzed to derive the development of bending creep performance. The results show modification leads to significant changes on material properties. Modification increases both the density and elastic modulus, and also tends to deflect creep deformation obviously less than untreated specimens.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference5 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3