Performance Analysis of Work-Roll Wear Models on Hot Rolling

Author:

Souto Nelson1,Marchand Elise1,Gay Antonin1,Koont Zafer2,Legrand Nicolas3

Affiliation:

1. ArcelorMittal Global R&D Maizières Process

2. ArcelorMittal Global R&D Hamilton

3. ArcelorMittal East Chicago Global R&D

Abstract

The purpose of this work is to evaluate the performance of several wear models, either with different mathematical formulation or different definition of the unknown wear coefficients, on the prediction of the work-roll wear amplitude in Hot Strip Mills (HSM). To achieve this goal, a classical model calibration approach based on inverse optimization has been developed to calibrate these several wear models. A large industrial hot rolling database composed by roll wear amplitude measurements for both later finishing mill stands (F6 and F7) from ArcelorMittal Dofasco HSM was considered and a least-square cost function was applied to minimize the differences between both numerical and experimental results during the optimization process. The averaged roll wear gap between measurements and optimized numerical predictions was then used as a quantitative indicator to compare the performance between the wear models and identify the most suitable one for roll wear prediction. In addition, an Artificial Neural Network (ANN) approach was developed based on the most suitable wear model. Thus, roll wear predictions obtained using the ANN were compared with the ones obtained using Classical calibration to evaluate the performance of both approaches.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wear of Oval and Round Calibers Rolls of High-Speed Wire Block;Advanced Manufacturing Processes V;2023-08-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3