Wear Compensation Model Based on the Theory of Archard and Definite Integral Method

Author:

Niu Pei-Feng12,Tian Bao-Liang12ORCID

Affiliation:

1. Key Lab of Industrial Computer Control Engineering, Yanshan University, Qinhuangdao 066004, China

2. National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Qinhuangdao 066004, China

Abstract

Aiming at low accuracy control of the flatness measuring system in cold rolling process, the wear of measuring rings of the flatness measuring roll is an important factor, which affects the flatness measurement accuracy and the strip quality. When the radial pressure and the width of the strip change, the wear thickness of the different measuring rings is also changed, which seriously increased the deviation between measured values and actual values. For thirty-eight measuring rings of flatness measuring roll, it is important to establish an accurate wear compensation model for each measuring ring to improve the measurement accuracy of the online flatness control model. Wear compensation model is established by the theory of Archard, definite integral method, and weighted coefficient method, and the data of the rolling length, strip width, and the radial force of the six million tons’ strip are used to analyze and discuss the wear compensation model of flatness measuring roll. The experiment result shows that the flatness control accuracy is improved effectively and the better strip shape can be achieved.

Funder

National Science Technology Support Program of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3