Mechanical Property Evaluation of PLA/Soybean Oil Epoxidized Acrylate Three-Dimensional Scaffold in Bone Tissue Engineering

Author:

Majeed Mahmood Hameed1,Abd Alsaheb Nabeel Kadhem1

Affiliation:

1. Al Nahrain University

Abstract

Recently investigated photocurable, biocompatible plant resin on tissue engineering to provide the scaffold with structural support and mechanical properties. A novel method had been used here to build our scaffold by combined the traditional three-dimensional fused deposition modeling (FDM) printing and injected the structural scaffold after fabrication with plant-based resin. The materials used are polymers a synthesized one polylactic acid and soybean oil epoxidized acrylate. The addition of soybean plant-based resin improves the adhesion and proliferation of the PLA scaffold while also providing structural support to the fabricated scaffold. The purpose of the study made optimization of printing parameters and compared different printing scaffolds to select the perfect one with preferred mechanical properties. Two designs are built (cubic design and cylinder design) to make a comparison of mechanical properties between the two designs. The novel method was used through injected soybean oil resin into the PLA scaffold by avoiding any heat and temperature rise of the resin. In the traditional method, the resin is printed using an SLA printer which exposed the resin to heating before printing, this will affect the properties of the final model in our technique temperature will eliminate by direct inject the plant-based resin into the PLA scaffold and then photocuring with ultraviolet curing device for 30 min at 405nm. Finally, the results demonstrate that after injecting PLA scaffold with soybean oil resin, the mechanical properties of the scaffold improve; additionally, the results show that the cylindrical design has more promising mechanical properties than the cubic design.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3