Durability Study of Glass/Carbon Hybrid Composites Immersed in Seawater for Marine Application

Author:

Abdurohman Kosim1,Adhitya Mohammad2,Nugroho Afid1

Affiliation:

1. LAPAN

2. RCAVe (Research Center for Advanced Vehicle Universitas Indonesia)

Abstract

The hybridization of carbon fiber (CFRP) and glass fiber (GFRP) composites is required to overcome the disadvantages of GFRP composites and their commercial feasibility for marine applications. This study was conducted on a hybrid glass/carbon composite with a vinyl ester matrix made by vacuum-assisted resin infusion process with a stacking sequence of [GCG2CG2C] s. Composites are immersed in natural seawater for up to 6 months. The maximum weight gain of e-glass/carbon hybrid composite is 0.79%. The results showed that the tensile, shear and compressive strengths of the glass/carbon hybrid composite after immersion in natural seawater decreased to 19%, 13%, and 50%, respectively. The decrease in compressive strength is the highest compared to others. It indicates that compressive strength should be of more significant concern for marine environmental applications. SEM analysis exhibited that seawater absorption causes the matrix, fiber, and fiber/matrix interface degradation. It is indicated by the absence of a firm matrix fracture surface, the number of fractures in the thread, the presence of fiber/matrix debonding, and fiber pull-out in the specimen after immersion in seawater. It is the cause of the decrease in the mechanical properties of the hybrid composite.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3